Главная Стартовой Избранное Карта Сообщение
Вы гость вход | регистрация 28 / 03 / 2024 Время Московское: 8862 Человек (а) в сети
 

Для поддержки хлебопеков Ингушетии будет направлено около 6 млн рублей

Между регионами распределят 4,7 млрд рублей для стабилизации цен на хлебобулочные изделия. Распоряжение об этом подписал премьер-министр Михаил Мишустин, сообщает пресс-служба правительства России.
На осуществление компенсации предприятиям хлебопекарной промышленности части затрат на реализацию произведенных и реализованных хлеба и хлебобулочных изделий, Ингушетия получит 5851,3 тыс. рублей.
Отмечается, что в конце декабря прошлого года было принято решение, что 2,9 млрд рублей из 4,7 млрд пойдет на покрытие затрат по приобретению продовольственной пшеницы, а 1,8 млрд рублей — на выплату возмещений хлебопекарным предприятиям. Довести средства до получателей поручено Минсельхозу страны.
Утвержденное Мишустиным распоряжение входит в комплекс мер по снижению цен на продовольствие, разработанный правительством по поручению Президента России Владимира Путина. Ранее глава государства указал, что необходимо своевременно реагировать на удорожание базовых продуктов.
Чтобы решить эту проблему, правительство повысило пошлины на ряд сельскохозяйственных товаров, в том числе на пшеницу, подсолнечник, рапс, утвердило правила поддержки мукомолов и хлебопеков, обеспечило заключение специальных соглашений о стабилизации цен между участниками рынка и регуляторами.
Для оперативного реагирования на ситуацию была также создана рабочая группа под руководством первого вице-премьера Андрея Белоусова, говорится в релизе.

Вы можете разместить эту новость у себя в социальной сети

Доброго времени суток, уважаемый посетитель!

В комментариях категорически запрещено:

  1. Оскорблять чужое достоинство.
  2. Сеять и проявлять межнациональную или межрелигиозную рознь.
  3. Употреблять ненормативную лексику, мат.

За нарушение правил следует предупреждение или бан (зависит от нарушения). При публикации комментариев старайтесь, по мере возможности, придерживаться правил вайнахского этикета. Старайтесь не оскорблять других пользователей. Всегда помните о том, что каждый человек несет ответственность за свои слова перед Аллахом и законом России!

Комментарии

Гм трофан Вс, 24/01/2021 - 20:57

Пшеница,кукуруза,черемша и некоторые другие растения и даже курица не имеет родословной на Земле!
В Ингушетии ещё не это предстоит изучать.

Гм трофан Вс, 24/01/2021 - 20:56

Пшеница,кукуруза,черемша и некоторые другие растения и даже курица не имеет родословной на Земле!
В Ингушетии ещё не это предстоит изучать.

Гм трофан Вс, 24/01/2021 - 21:01

Удивительно и то,что многие боги и фараоны и другие исторические личности изображены с электродами на голове из какого-то гибкого угольного материала.
Зачем электроды на голове?

Гм трофан Вс, 24/01/2021 - 21:09

Графен
Вместо того чтобы сжимать и нагревать графит, мы, следуя за Андреем Геймом и Константином Новоселовым, приклеим к кристаллу графита кусочек скотча. Затем отклеим его — на скотче останется тонкий слой графита. Повторим эту операцию еще раз — приложим скотч к тонкому слою и снова отклеим. Слой станет еще тоньше. Повторив процедуру еще несколько раз, мы получим графен — материал, за который вышеупомянутые британские физики получили Нобелевскую премию в 2010 году.

Графен представляет собой плоский монослой из атомов углерода, полностью идентичный атомарным слоям графита. Его популярность связана с необычным поведением электронов в нем. Они двигаются так, словно бы вовсе не обладают массой. В действительности, конечно, масса электронов остается все той же, что и в любом веществе. Во всем «виноваты» атомы углерода графенового каркаса, притягивающие заряженные частицы и образующие особенное периодическое поле.

Устройство на основе графена. На заднем плане фотографии — золотые контакты, над ними находится графен, выше — тонкий слой полиметилметакрилата

Engineering at Cambridge / flickr.com

Поделиться

Следствием такого поведения стала большая подвижность электронов — они перемещаются в графене гораздо быстрее, чем в кремнии. По этой причине многие ученые надеются, что основой электроники будущего станет именно графен.

Интересно, что у графена есть углеродные собратья — пентаграфен и фаграфен. Первый из них состоит из немного искаженных пятиугольных секций и, в отличие от графена, плохо проводит электрический ток. Фаграфен состоит из пяти-, шести- и семиугольных секций. Если свойства графена одинаковы во всех направлениях, то фаграфен будет обладать выраженной анизотропией свойств. Оба этих материала были предсказаны теоретически, но в реальности пока не существуют.

: zeiss.com
Обломок кремниевого монокристалла (на переднем плане) на вертикальном массиве углеродных нанотрубок

zeiss.com
Углеродные нанотрубки
Представьте себе, что вы свернули небольшой кусочек графенового листа в трубку и склеили ее края. Получилась полая конструкция, состоящая из тех же самых шестиугольников атомов углерода, что и графен и графит, — углеродная нанотрубка. Этот материал во многом родственен графену — он обладает высокой механической прочностью (когда-то из углеродных нанотрубок предлагали строить лифт в космос), высокой подвижностью электронов.

Однако есть одна необычная особенность. Графеновый лист можно скручивать параллельно воображаемому краю (стороне одного из шестиугольников), а можно и под углом. Оказывается, от того, как мы скрутим углеродную нанотрубку, будут очень сильно зависеть ее электронные свойства, а именно: будет она больше похожа на полупроводник с запрещенной зоной или на металл.

Многослойная углеродная нанотрубка

Wikimedia commons

Поделиться

Когда углеродные нанотрубки наблюдались впервые, достоверно неизвестно. В 1950–1980-х года разные группы исследователей, занимавшихся катализом реакций с участием углеводородов (например, пиролиза метана), обращали внимание на продолговатые структуры в саже, покрывавшей катализатор. Сейчас, чтобы синтезировать углеродные нанотрубки только конкретного вида (конкретной хиральности), химики предлагают использовать специальные затравки. Это небольшие молекулы в виде колец, состоящих, в свою очередь, из шестиугольных бензольных колец. Про работы по их синтезу можно почитать, например, здесь.

Как и графен, углеродные нанотрубки могут найти большое применение в микроэлектронике. Уже сейчас созданы первые транзисторы на нанотрубках, превосходящие по своим свойствам традиционные кремниевые приборы. Кроме того, нанотрубки легли в основу транзистора с самым маленьким затвором в мире.

Карбин
Говоря о вытянутых структурах из атомов углерода, нельзя не упомянуть карбины. Это линейные цепочки, которые по оценкам теоретиков могут оказаться самым прочным материалом из возможных (речь идет об удельной прочности). К примеру, модуль Юнга для карбина оценивается в 10 гиганьютон на килограмм. У стали этот показатель в 400 раз меньше, у графена — по меньшей мере в два раза меньше.

Тонкая нить, тянущаяся к железной частице внизу — карбин

Wikimedia Commons

Поделиться

Карбины бывают двух типов, в зависимости от того, как устроены связи между атомами углерода. Если все связи в цепочке одинаковые, то речь идет о кумуленах, если же связи чередуются (одинарная-тройная-одинарная-тройная и так далее), то о полиинах. Физики показали, что нить карбина можно «переключать» между этими двумя видами путем деформации — при растяжении кумулен превращается в полиин. Интересно, что это радикально меняет электрические свойства карбина. Если полиин проводит электрический ток, то кумулен— диэлектрик.

Главная сложность в изучении карбинов — их очень сложно синтезировать. Это химически активные вещества, к тому же легко окисляющиеся. На сегодняшний день получены цепочки длиной лишь в шесть тысяч атомов. Чтобы достигнуть этого, химикам пришлось растить карбин внутри углеродной нанотрубки. Кроме того, синтез карбина поможет побить рекорд размера затвора в транзисторе — его удастся уменьшить до одного атома.

Фуллерены
Хотя шестиугольник — одна из самых стабильных конфигураций, которые могут образовывать атомы углерода, есть целый класс компактных объектов, где встречается правильный пятиугольник из углерода. Эти объекты называются фуллеренами.

В 1985 году Гарольд Крото, Роберт Кёрл и Ричард Смолли исследовали пары углерода и то, в какие фрагменты слипаются атомы углерода при охлаждении. Оказалось, что в газовой фазе есть два класса объектов. Первый — кластеры, состоящие из 2–25 атомов: цепочки, кольца и другие простые структуры. Второй — кластеры, состоящие из 40–150 атомов, не наблюдавшиеся ранее. За следующие пять лет химикам удалось доказать, что этот второй класс представляет собой полые каркасы из атомов углерода, наиболее устойчивый из которых состоит из 60 атомов и повторяет по форме футбольный мяч. C60, или бакминстерфуллерен, состоял из двадцати шестиугольных секций и 12 пятиугольных, скрепленных между собой в сферу.

Открытие фуллеренов вызвало большой интерес химиков. Впоследствии был синтезирован необычный класс эндофуллеренов — фуллеренов, в полости которых находился какой-либо посторонний атом или небольшая молекула. К примеру, всего лишь год назад в фуллерен впервые поместили молекулу плавиковой кислоты, что позволило очень точно определить ее электронные свойства.

Фуллериты — кристаллы фуллеренов

Wikimedia Commons

Поделиться

В 1991 году оказалось, что фуллериды — кристаллы фуллеренов, в которых часть полостей между соседними многогранниками занимают металлы, — это молекулярные сверхпроводники с рекордно высокой температурой перехода для этого класса, а именно 18 кельвин (для K3C60). Позднее нашлись фуллериды и с еще большей температурой перехода — 33 кельвина, Cs2RbC60. Такие свойства оказались напрямую связаны с электронной структурой вещества.

Q-углерод
Среди недавно открытых форм углерода можно отметить так называемый Q-углерод. Впервые он был синтезирован американскими материаловедами из Университета Северной Каролины в 2015 году. Ученые облучали аморфный углерод с помощью мощного лазера, локально разогревая материал до 4000 градусов Цельсия. В результате примерно четверть всех атомов углерода в веществе принимала sp2-гибридизацию, то есть то же электронное состояние, что и в графите. Остальные атомы Q-углерода сохраняли гибридизацию, характерную для алмаза.

Q-углерод

ncsu.edu

Поделиться

В отличие от алмаза, графита и других форм углерода, Q-углерод оказался ферромагнетиком, таким как магнетит или железо. При этом его температура Кюри составила около 220 градусов Цельсия — только при таком нагреве материал терял свои магнитные свойства. А при допировании Q-углерода бором физики получили еще один углеродный сверхпроводник, с температурой перехода уже около 58 кельвинов.

***
Перечисленное — не все известные формы углерода. Более того, прямо сейчас теоретики и экспериментаторы создают и изучают новые углеродные материалы. В частности, такие работы ведутся в Уральском федеральном университете. Мы обратились к Анатолию Федоровичу Зацепину, доценту и главному научному сотруднику Физико-технологического института УрФУ, чтобы выяснить, как можно предсказывать свойства еще не синтезированных материалов и создавать новые формы углерода.

Анатолий Зацепин работает над одним из шести прорывных научных проектов УрФУ «Разработка фундаментальных основ новых функциональных материалов на базе низкоразмерных модификаций углерода». Работа осуществляется с академическими и индустриальными партнерами России и мира.

Проект реализует Физико-технологический институт УрФУ — стратегическая академическая единица (САЕ) университета. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

N + 1: Свойства углеродных наноматериалов очень сильно зависят от структуры и варьируются в широких пределах. Можно ли как-то заранее предсказать свойства материала по его структуре?

Анатолий Зацепин: Предсказать можно, и мы этим занимаемся. Существуют методы компьютерного моделирования, с помощью которых осуществляются расчеты из первых принципов (ab initio) — мы закладываем определенную структуру, моделируем и берем все фундаментальные характеристики атомов, из которых состоит эта структура. В результате получаются те свойства, которыми может обладать материал или новое вещество, которое мы моделируем. В частности, что касается углерода, мы сумели смоделировать новые модификации, не известные природе. Их можно создать искусственно.

В частности, наша лаборатория на физтехе УрФУ сейчас занимается разработкой, синтезом и исследованиями свойств новой разновидности углерода. Ее можно назвать так: двумерно-упорядоченный линейно-цепочный углерод. Такое длинное название связано с тем, что этот материал представляет из себя так называемую 2D-структуру. Это пленки, составленные из отдельных цепей углерода, причем в пределах каждой цепи атомы углерода находятся в одной и той же «химической форме» — sp1-гибридизация. Это придает совершенно необычные свойства материалу, в цепочках sp1-углерода прочность превышает прочность алмаза и других углеродных модификаций.

Когда мы формируем из этих цепочек пленки, получается новый материал, обладающий свойствами, присущими цепочкам углерода, плюс к тому совокупность этих упорядоченных цепочек формирует двумерную структуру или сверхрешетку на специальной подложке. Такой материал обладает большими перспективами не только благодаря механическим свойствам. Самое главное, что углеродные цепочки в определенной конфигурации можно замкнуть в кольцо, при этом возникают очень интересные свойства, такие как сверхпроводимость, а магнитные свойства таких материалов могут быть лучше, чем у существующих ферромагнетиков.

Задача остается в том, чтобы их реально создать. Наше моделирование показывает путь, куда двигаться.

Как сильно отличаются реальные и предсказанные свойства материалов?

Погрешность всегда существует, но дело в том, что расчеты и моделирование из первых принципов используют фундаментальные характеристики отдельных атомов — квантовые свойства. И когда на таком микро- и наноуровне из этих квантовых атомов формируются структуры, то ошибки связаны с существующим ограничением теории и тех моделей, которые существуют. Например, известно, что уравнение Шредингера точно можно решить только для атома водорода, а для более тяжелых атомов надо использовать определенные приближения, если мы говорим о твердых телах или более сложных системах.

С другой стороны — ошибки могут возникать за счет компьютерных вычислений. При всем этом грубые ошибки исключены, а точности вполне достаточно, чтоб предсказать то или иное свойство или эффект, которые будут присущ данному материалу.

Много ли материалов можно предсказать такими способами?

Если говорить об углеродных материалах, то тут много вариаций, и я уверен, что многое еще не исследовано и не открыто. В УрФУ есть все для исследования новых углеродных материалов, и впереди предстоит большая работа.

Мы занимаемся и другими объектами, к примеру, кремниевыми материалами для микроэлектроники. Кремний и углерод — это, кстати, аналоги, они находятся в одной группе в таблице Менделеева.

Владимир Королёв

© 2007-2009
| Реклама | Ссылки | Партнеры